Padasuatu ruangan terdapat 30 orang, setiap orang saling bersalaman, makan banyaknya salaman yang dilakukan adalah? Reply. rumus hitung says. May 26, 2015 at 05:54. 1 orang bersalaman dengan 29 yang lain ada 30 orang jadi 30 x 29 akan tetapi salaman a dengan b sama seperti b dengan a jadi harus dibagi 2 jadi jumlah salaman = 30 x 29 /2 = 435. 12SMA. Matematika. PROBABILITAS. Dalam suatu ruangan terdapat 30 orang dan setiap orang saling bersalaman. Banyaknya salaman yang dilakukan adalah .Tipe Soal UN. Kombinasi. Peluang Wajib. PROBABILITAS. Dalamsuatu ruangan terdapat 30 orang. Setiap orang saling berjabat tangan. Banyaknya jabat tangan yang dilakukan adalah a. 435. b. 455. c. 870. d. 875. e. 885. Jawab: Banyak orang = 30. Setiap jabat tangan membutuhkan 2 orang. 30 C 2 = 435. Jawaban yang tepat A. 25. Plat nomor yang terdiri atas 3 angka akan dibuat dari 8 angka yang tersedia Vay Tiền Nhanh Ggads. MatematikaPROBABILITAS Kelas 12 SMAPeluang WajibPermutasiDalam suatu ruangan tunggu terdapat 4 kursi dan 10 orang yang akan menggunakan kursi tersebut. Dengan berapa cara mereka dapat duduk di kursi itu jika salah seorang dari padanya selalu duduk di kursi WajibPROBABILITASMatematikaRekomendasi video solusi lainnya0156Banyak kata yang dapat disusun dari kata 'SUKSES' adalah ...0152Dari angka-angka 0,1,2,3,4,6,7, dan 9 akan dibentuk bilan...0115Dari dalam sebuah kantong yang berisi 4 bola putih, 3 bol...0305Tiga pria dan empat wanita akan duduk dalam satu baris. B...Teks videoHalo coffee Friends untuk menyelesaikan soal ini pertama kita harus tahu ada yang disebut dengan permutasi permutasi itu rumusnya seperti ini dalam notasi rumus itu adalah npl dan rumusnya itu adalah n faktorial dibagi dengan n dikurangi n faktorial seperti ini dengan n merupakan total unsur yang dimiliki dan R adalah banyak unsur yang diambil permutasi ini digunakan ketika urutan itu penting ketika dalam pengambilan kemungkinannya contohnya jika kita memiliki posisi a b posisi a b itu akan berbeda kemungkinannya dengan kita memiliki posisi B jadi posisi a b dan posisi B itu merupakan dua posisi yang berbeda menjadi dua kemungkinan yang berbeda untuk pada soal ini kita akan hitung total kemungkinannya dimana kemungkinan-kemungkinan tersebut akan kita jumlahkan nanti di akhir. Nah yang pertama di sini yang dimaksud dengan akan dijumlahkan. Pikirannya pertama seperti ini jika kita memiliki 4 buah kursi seperti ini yang akan diduduki oleh 10 orang dengan 10 orang itu misalnya kita anggap inisialnya adalah dari A sampai J maka kita anggap misalnya kursi yang pertama itu akan ditempati oleh sia karena disini. Sebutkan bahwa kursi jika salah seorang dari padanya selalu duduk dikursi tertentu jadi kita anggap kursi yang pertama ini selalu ditempati oleh sia maka disini kita memiliki 9 orang lain yang belum duduk yaitu dari B sampai J yang akan menempati 3 kursi lain yang ini sehingga untuk menempati 3 Kursi ini kita akan menggunakan permutasi karena bisa saja yang duduk b c d atau bisa saja b d c itu akan menjadi kemungkinan yang berbeda sehingga caranya adalah kita akan gunakan permutasi karena urutannya penting sehingga dengan menggunakan permutasi kita akan dapatkan 9 karena dari 9 orang akan diam 3 orang atau dipilih 3 orang sehingga akan jadi 93 seperti ini Sehingga dalam perhitungannya kita akan menggunakan rumus nya menjadi 9 faktorial dikurang dibagi maksudnya dengan 9 dikurangi 3 faktorial seperti ini Sehingga caranya adalah 9. Faktorial itu ada caranya kita akan kalikan 9 dikali 8 dikali 7 dikali 6 dikali 5 dikali 4 dikali 3 dikali 2 dikali 1 sampai 1 faktorial itu kemudian dibagikan dengan 9 dikurangi 3 itu adalah 6 jadi 6 faktorial dimana faktor yaitu adalah 6 dikali 5 dikali 4 dikali 3 dikali 2 dikali 1 terdiri dari sini kita akan coret namanya kita coret 5 nya juga 4 juga 3 dan 2 dan 1 Nya sehingga kita mendapatkan 9 dikali 87 saja maka kita akan dapatkan jawabannya adalah 504 jadi kita punya 504 cara jika si A itu menempati posisi kursi yang pertama nah, kemungkinan yang kedua adalah kita punya Jika Si A itu bukan duduk di kursi yang pertama tapi si itu duduknya di kursi yang kedua seperti ini Sehingga dia juga kita akan mendapatkan 9 orang lainnya harus menempati posisi kursi yang lainnya yaitu posisi kursi yang pertama ketiga dan keempat ini di sini juga kita akan pilih dengan menggunakan 9 per 3 maka akan dapatkan seperti tadi 9 faktorial dibagi 6 faktorial atau jawabannya adalah 504 karena tadi kita sudah itu memang sempat lalu kemungkinan yang ketiga kita akan dapatkan jika sekarang si hanya ada di posisi kursi yang ketiga dikasih ada di posisi kursi yang ketiga maka kita akan mendapatkan 9 p 3 juga jawabannya adalah 504 kemudian kita punya kamu punya tempat kemungkinan yang keempat adalah kita punya si Anya sekarang ada di kursi yang ke-4 seperti ini jadi kita akan dapatkan jawabannya adalah 9 p 3 juga yaitu 504 sehingga jika kita totalkan 504 + 504 + 5 + 4 + 504 kemungkinan pertama ditambah bilangan ke-2 ditambah kemungkinan ketiga dan keempat maka kita mendapatkan nilai 2 2016 kemungkinan seperti ini Nah tapi di sini belum selesai karena kita punya 2016 kemungkinan itu Ika yang pasti duduk di sebuah tempat itu syiah, sedangkan di sini kita memiliki 10 orang dari A sampai J bisa saja kita miliki seperti ini kemungkinan nya bisa saja yang selalu duduk dikursi tertentu itu adalah si B jadi si B selalu duduk di kursi pertama atau si B selalu duduk dikursi kedua atau cc selalu duduk dikursi ketiga seperti itu sehingga dari sini kita akan dapatkan kemungkinan jika si B yang tidak diganti itu akan jadi 2016 juga 2016 kemungkinan seperti ini belum lagi kita akan mendapat Kasih sayang di tidak diganti atau side yang tidak diganti sampai z yang tidak diganti sehingga kita akan mendapatkan total kemungkinan yaitu akan menjadi jika masing-masing orang tidak diganti Itu ada 2016 karena kita memiliki 10 orang maka akan dikalikan dengan 10 jadi jawabannya kan jadi 160 cara atau kemungkinan seperti ini sampai jumpa di video pembahasan yang berikutnya. Kelas 12 SMAPeluang WajibKombinasiDalam suatu ruangan terdapat 30 orang. Setiap orang saling bersalaman. Banyaknya salaman yang dilakukan seluruhnya adalah ... .KombinasiPeluang WajibPROBABILITASMatematikaRekomendasi video solusi lainnya0235Dari 10 siswa yang terlambat datang ke sekolah, akan dipi...0159Bu Erna yang tinggal di Jakarta ingin pergi ke Eropa via ...0242Dalam suatu tes, seorang siswa harus menjawab 7 soal dari...0153Dari angka 1 sampai dengan 9 akan dibentuk bilangan tiga ...Teks videopada soal ini dikatakan bahwa dalam suatu ruangan terdapat 30 orang yang di mana selanjutnya dari 30 orang itu saling bersalaman semua sehingga kita ditanyakan Berapa banyak salaman yang terjadi pada ruangan itu untuk menyelesaikannya maka kita akan menggunakan rumus kombinasi R dari n dengan rumusnya adalah n faktorial dibagi dengan n kurang n faktorial sekali kan dengan R faktorial disini saya menggunakan kombinasi karena pada kasus orang bersalaman jika jika bersalaman dengan b, maka terhitung 1 dan terhitung sama jika kita kan B bersalaman dengan a sehingga kasusnya ini adalah rumus kombinasi selanjutnya disini kita peroleh adalah sama dengan 30 sedangkan pada kasus bersalaman itu adalah yang terjadi adalah setiap 2 orang maka ini kita akan menggunakan rumus binasi 2 dari 30 maka luasnya adalah 30 faktorial saya bagi dengan n kurang R berarti di sini adalah 30 kurang 2 jadi 28 faktorial dikalikan dengan 2 faktorial dari sini kita Tuliskan 30 faktor yang dituliskan Menjadi 30 * 31 beratnya menjadi 29 kalikan dengan 28 faktorial sebagai dengan 28 faktorial 2 faktorial ini adalah 2 * 1 di sini bisa kita coret 8 faktorial maka disini kita peroleh adalah 30 * 29 * 2, maka yang kita cari adalah 30 / 2/15 ini saya gantikan dengan 2915 * 29 kita hitung ini nilainya adalah 435 sehingga opsi yang benar disini adalah opsi a Oke teman-teman sampai jumpa di soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Halo Winda, jawaban dari petanyaan tersebut adalah A. Perhatikan penjelasan berikut ya. Ingat rumus kombinasi r unsur dari n unsur adalah nCr = n!/n-r! r!. Kegiatan bersalaman adalah salah satu kejadian yang tidak memperhatikan urutan, maka dari itu soal di atas sesuai dengan konsep kombinasi. Diketahui Banyak orang n = 30. Bersalaman dilakukan oleh 2 orang, maka r = 2. Gunakan rumus kombinasi untuk mengetahui banyaknya salaman yang dilakukan. nCr = n!/n-r! r! 30C2 = 30!/30 - 2! 2! 30C2 = 30 x 29 x 28!/28! x 2 30C2 = 30 x 29/2 30C2 = 15 x 29 30C2 = 435 Dengan demikian, banyaknya salaman yang di lakukan seluruhnya adalah 435. Oleh karena itu, jawaban yang benar adalah A. 1. Invers dari pernyataan p^ ~q =>p adalah... A.~pvq=>p B.~pvq=>~p C.~p^q=>~p D.pvq=>~p 2. Nilai dari 22x + 2–2x jika diketahui Diketahui 2x + 2–x = 5 adalah.... 3. Nilai p² + q² dari persamaan 2x² + 6x = 1, dengan Akar-akarnya p dan q adalah ........ 4. Nilai optimum dari 2x + 3y pada daerah himpunan penyelesaian pada daerah yang diarsir tersebut adalah.... 5. Simpangan kuartil dari data berikut ini 2, 4, 3, 2, 6, 5, 5, 5, 4, 8, 7, 6, 8, 4, 3 adalah ..... 6. Sebuah kotak A terdapat 4 bola merah dan 3 bola putih, kotak B berisi 6bola merah dan 2 putih. Dari masing-masing kotak diambil, maka peluang yangterambil bola merah dari kotak A dan putih dari kotak B adalah ...... A. 8/17 B. 8/7 C. 1/7 D. 1/56 7. Diketahui persamaan lingkaran x² + y² = 10, maka salah satu persamaan garis singgung yang ditarik dari titik A 0, 10 ke persamaan lingkaran itu adalah ....... = -3x + 10 = -2x + 10 = -3x + 12 = -2x + 12 8. Nilai dari Cos 315° adalah ...... A. ½√3 B. ½√2 C. ½√5 D. ½√6 9. Diketahui suatu fungsi f R -> R dan g R-> R ditentukan oleh fx = 2x - 1 dan gx = 5x - x². Nilai g o f -1 adalah ........ 10. Siti Rahma menabung di suatu bank pemerintah. Pada bulan pertama Siti Rahma menabung sebesar Rp bulan kedua Siti Rahma menabung Rp bulan ketiga Siti Rahma menabung dan seterusnya. Besar tabungan anak tersebut selama 2 tahun adalah ........ 11. Pada sebuah toples terdapat 10 kancing yang terdiri dari 7 kancing warna merah, dan 3kancing berwarna biru. Jika diambil 3 kancing secara acak, maka peluang terambil tigakancing tersebut berwarna merah adalah ........ 12. Diketahui suatu parabolaberpuncak di titik 2, 4 dan fokus 5, 4, maka persamaannya adalah ........ A.y - 4² = 8 x - 2 B.y - 2² = 12 x - 2 C.y - 4² = 12 x - 2 D.y - 4² = 12 x - 4 13. Persamaan 4x² - px + 25 = 0 akar-akarnya sama. Nilai p adalah .... atau 2 atau 20 atau 5 atau 10 14. Suku pertama suatu barisan Geometri adalah 2 dan rasionya 3. Jika jumlah n sukupertama deret Geometri tersebut = 80, banyaknya barisan suku dari barisan itu adalah ..... 15. Diketahui terdapat empat angka 4, 5, 6 dan 7. Banyak cara untuk menyusun bilangan-bilangan yang terdiri dari empat angka dengan syarat bahwa bilangan-bilangan itu tidak mempunyai angka yang sama adalah .... cara. 16. Nilai F'x dari fungsi Fx = 3x - 2 sin 2x + 1 adalah .... sin 2x + 1 + 6x - 4 cos 2x + 1 cos 2x + 1 + 6x - 4 cos 2x + 1 sin 2x + 1 + 6x - 4 sin 2x + 1 cos 2x + 1 + 6x - 4 sin 2x + 1 17. Diketahui suatu fungsi f R -> R dan g R-> R ditentukan oleh fx = 2x - 1 dan gx = 5x - x². Nilai f o g -1 adalah ........ 18. Dalam suatu ruangan terdapat 30 orang. Setiap orang saling bersalaman. Banyaknya salaman yang dilakukan seluruhnya adalah .... 19. fx = sin³ 5x + 8 memiliki turunan ........ sin² 5x + 8 sin 5x + 8 sin² 5x + 8 cos 5x + 8 5x + 8 cos 5x + 8 sin 5x + 8 cos 5x + 8 20. Pernyataan " Jika kamu rajin belajar, maka kamu lulus ujian " ekuivalen dengan ........ kamu tidak lulus ujian, maka kamu tidak rajin belajar kamu lulus ujian, maka kamu rajin belajar kamu tidak rajin belajar, maka kamu lulus ujian kamu tidak lulus ujian, maka kamu rajin belajar 21. Bentuk sederhana dari 1 + 3√2 – 4 – √50 adalah …. + 8√2 + 8√2 + 8√2 D.– 3 + 8√2 22. Jumlah n suku pertama suatu deret Aritmatika adalah S n = n² - n , suku ke-10 deret iniadalah ....... 23. Bentuk cos x° + sin x° dapat diubah menjadi bentuk h cos x - a°. Maka nilai h dan a berurutanadalah ....... A.√3 dan 350 B.√2 dan 350 C.√3 dan 450 D.√2 dan 450 24. Diketahui lingkaran x – 2 ² + y + 1 ² =13, salah satu persamaan garis singgung yang berada di titik yang berabsis –1 adalah … – 2y + 5 = 0 – 2y + 4 = 0 – 5y + 5 = 0 – 2y + 5 = 0 25. Diketahui suatu barisan aritmetika dengan suku ketiganya adalah 36, jika jumlah suku kelima dan ketujuh barisan tersebut adalah 144. Maka jumlah sepuluh suku pertama deret tersebut adalah … 26. Rasa kesatuan dalam bertanah air, berbangsa dan berbahasa membangkitkan semangat mereka untuk berjuang. Kalimat berikut yang menggunakan kata berimbuhan men-kan yang maknaPengimbuhannya sama dengan yang terdapat pada membangkitkan di atas adalah ........ lampu itu meninggikan tangga perumus sedang hasil loka karya itu pramuwisma tidak sesuai dengan HAM menceritakan urutan peristiwa kepada hukum 27. Dua buah dadu bermata enam dilemparkan satu kali secara bersamaan. Peluang munculnya jumlah mata dadu 5 atau jumlah mata dadu 10 adalah .... 28. Parabola mempunyai puncak dititik n,m dan terbuka ke atas, rumus fungsinya adalah.... = x - n² - m = -x - n² + m = x - n² - m = x - n² + m 29. Kontraposisi dari implikasi " Jika ujian lulus, maka Ali dibelikan sepeda " adalah ....... Ali tidak dibelikan sepeda, maka Ali tidak lulus ujian. Ali dibelikan sepeda, maka Ali tidak lulus ujian. Ali tidak dibelikan sepeda, maka Ali lulus ujian. Ali dibelikan sepeda, maka Ali lulus ujian. 30. Nilai minimum dari 2x + 3y pada daerah himpunan penyelesaian pada daerah yang diarsir tersebut adalah.... 31. Jika suku pertama dari barisan deret Geometri adalah 25 dan suku ke-9 adalah 6400. Maka sukuke-5 deret ini adalah ..... 32. Bibi membagikan kue kepada 5 orang anaknya menurut aturan deret aritmetika. Semakin tua usia anak semakin sedikit kue yang diperoleh. Jika banyak kue yang diterima anak kedua 11 buah dan anak keempat 19 buah, maka jumlah seluruh kue adalah …buah. 33. Suatu kotak berisi 5 bola merah dan 3 bola putih. Dua bola diambil satu persatu di mana bola pertama yang diambil dikembalikan lagi dalam kotak. Peluang terambilnya bola pertama pertama dan kedua berwarna merah adalah .... 34. Jika jumlah n suku pertama dari sebuah deret Aritmatika adalah S n = 1/2 n 3n - 1. Maka bedaderet Aritmatika tersebut adalah .... 35. Diketahui suatu persamaan 4x² - px + 25 = 0 memiliki akar-akarnya yang sama. Maka Nilai p adalah .... atau 30 atau 12 atau 5 atau 20 36. nilai untuk x = 4 dan y = 27 adalah .... 2√2+1 1√2+3 2√3+1 2√2+1 37. Suku pertama dari barisan deret Geometri adalah 25 dan suku ke-9 adalah 6400. Sukuke-5 deret ini adalah ..... 38. Grafik fungsi kuadrat yang persamaannya y = ax² - 5x - 3 memotong sumbu x. Salah satutitik potongnya adalah -1/2 , 0, maka nilai a sama dengan ....... 39. Disuatu perkumpulan akan dipilih perwakilan yang terdiri dari 3 orang pria dan 2 orang wanita. Jika perkumpulan tersebut terdiri dari 7 pria dan 8 wanita, berapa banyak susunan perwakilan yang dapat dibentuk…. 40. Ayah membeli sebuah mobil dengan haga Rp. Jika setiap tahun nilai jualnya menjadi ¾ dari harga sebelumnya. Berapa nilai jual setelah dipakai 3 tahun ? D. Rp. 41. Dari 10 peserta finalis lomba bayi sehat akan dipilih secara acak 3 yang tesehat. Maka banyaknya cara pemilihan tersebut ada … cara 42. Dalam suatu rapat siswa yang terdiri dari 6 orang dalam posisi yang melingkar. Jika ketua dan wakil harus selalu duduk bersebelahan, ada berapa formasi duduk yang bisa dibentuk…. 43. Nilai fy' dari suatu bilangan kompleks y = 4 + 3i dan fy = y² + 2y dengan y' adalah kawan dari y adalah .... - 15i - 20i - 30i - 30i 44. x – 2 habis membagis suku banyak Px = 3x3 – 4x2 – 6x + k . maka Sisa pembagian Px oleh x2 + 2x + 2 adalah …. + 34 + 25 + 24 + 24 45. Diketahui pertidaksamaan 3x² - 2x - 8 > 0, untuk x anggota R, maka himpunan penyelesaian adalah.... A. {x x > 2 atau x 2 atau x 3 atau x 2 atau x R dan g R-> R ditentukan oleh fx = 2x - 1 dan gx = 5x - x². Nilai f o g -1 adalah ........ 49. Pernyataan majemuk Jika hari hujan maka selokan meluap, ekuivalen dengan ........ selokan tidak meluap, maka hari tidak hujan selokan meluap, maka hari tidak hujan selokan tidak meluap, maka hari hujan selokan meluap, maka hari hujan 50. Persamaan lingkaran denan pusat yang terletak di garis 2x – 4y – 4 = 0, dan menyinggung sumbu x negatif dan sumbu y negatif adalah …. - y² + 4x - 4y + 4 = 0 + y² - 4x + 4y - 4 = 0 - y² - 4x - 4y - 4 = 0 + y² + 4x + 4y + 4 = 0

dalam suatu ruangan terdapat 30 orang